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Compositional combination and selection of 
forecasters 

Antonio Martı́n Arroyo∗ and Aránzazu de Juan Fernández† 

Abstract 

The Split-Then-Combine approach has previously been used to generate the weights 
of forecasts in a combination in the Euclidean space. This paper extends this approach 
to combine forecasts inside the simplex space, the sample space of positive weights 
adding up to one. As it turns out, the simplicial statistic given by the sample centre com-
pares favourably against the fxed-weight, average forecast. Besides, we also develop 
a Combination-After-Selection method to get rid of redundant forecasters. We apply 
these approaches to make out-of-sample one-step ahead combinations and subcom-
binations of forecasts for several economic variables. This methodology is particularly 
useful when the sample size is smaller than the number of forecasts, a case where 
other methods (e.g., ordinary least squares or principal component analysis) are not 
applicable. 
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1. Introduction 

There is a vast body of literature advocating the usefulness of forecast combination meth-
ods, both theoretically and empirically. A simple and widely used one consists of simply 
attributing equal weights to the individual predictions (neutral element of a weight com-
bination in the simplex.) However, the idea of determining the optimal weight combina-
tion that minimize some objective criterion (e.g., the mean square forecast error) is more 
appealing (Confitti, De Mol and Giannone, 2015). This is the case of the varying-weight 
sample centre g (Aitchison, 1982). It is the central tendency of our weight combinational 
sample and it is defned as the weight combination whose components are the sample 
geometric mean of the weights of each forecaster. Unlike ordinary least squares (OLS) 
and principal component analysis (PCA), this is a viable strategy even when the num-
ber of forecasters to be combined gets large, provided that we constrain weights to be 
positive and add up to one. Hence, the optimal combination problem reduces to a (possi-
bly high-dimensional) constrained least-squares regression problem, where the complete 
covariance structure between weights is taken into account. Indeed, this enforces an im-
plicit shrinkage on weights which ensures a reasonable out-of-sample performance of 
the combined forecasters. This problem turns out to be analogous to the determination 
of no-short minimum variance Markowitz portfolios, which are a special case of a larger 
family of sparse and stable portfolios that are derived through a constrained “lasso” re-
gression problem (Tibshirani, 1996), where the weight vector has a unit L1-norm. This 
type of constraint is known to enforce sparsity, namely the presence of zeros in the 
weight vector, which means that only a small number of forecasters will be selected 
(subcombinations in our Combination After Selection (CAS) approach). 

Forecasters have access to a wide variety of information and forecasting techniques, 
thus leading to a considerable degree of heterogeneity or redundancy among them. A 
weighted average forecast is expected to perform better than individual ones because this 
way we can diversify away idyosincratic forecast misspecifcations, thus reducing the 
variance of the forecast. The simplest example is the (fxed weight) arithmetic average. 
More sophisticated methods that make use of varying weights usually do not improve the 
average in empirical applications because of the instability of the estimated weights (a 
problem known as forecast combination puzzle, Stock and Watson, 2004); in particular, 
when an increasing number of forecasters requires us to estimate an increasing number 
of weights (a problem known as the curse of dimensionality). The forecast combination 
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puzzle has been considered by Smith and Wallis (2009), who pointed out that the failure 
of more sophisticated combination methods is due to the estimation of the combining 
weights. 

With forecast (or model)-specifc combinations, forecasting is often based on pre-
dicting the same variable independently by forecasters. However, analysts who are in-
terested in forecasting a variable from a specifc source should not ignore the forecasts 
from other competing sources. A forecast combination is in fact infuenced by all the 
forecasts; hence, the relationship among individual forecasters is lost when forecasts 
are independently analysed. Only a few methods have been suggested that incorporate 
dependence between forecasters. Multivariate models could incorporate dependence be-
tween forecasters if we knew such a dependence. Alternatively, we can engage straight-
away with weight distributions based on given individual forecast errors, as dependence 
between weights can be incorporated directly, thus increasing forecast accuracy. 

One important difference between modeling forecast-specifc combinations and 
weight distributions is that weights are directly dependent on each other on an aggregated 
level. The awareness of problems, however, arising from the use of standard statistical 
methods with proportions (weights) dates back to Pearson, (1897); that is, spurious ef-
fects on their covariance structure. In particular, each row or column of the variance ma-
trix of a vector of weights sums up to zero. Given that the variances are always positive, 
this implies that some covariances are forced towards negative values (Chayes, 1960). 

Independent modelling and forecasting with forecast-specifc combinations are not 
only unattractive since they ignore dependence patterns among (relative) weights, but 
also because weights often fail to be coherent in the sense of the erratic way in which 
the covariance associated with two specifc weights can fuctuate in sign as we move 
from a full combination to lower and lower dimensional subcombinations. In fact, there 
is no relationship between the variance matrix of a subcombination and that of the full 
combination. Besides, variances may display different rank orderings as we form sub-
combinations, which could lead to implausible forecasters. 

Also, avoided forecasts in a subcombination will result in an increase of weights 
for some other forecasters. By defnition of a weight combination, not only is there a 
common element in the numerator and denominator of each weight, but also all weights 
have a common denominator. Avoided forecasters in a subcombination thus affect both 
the numerator and the denominator, and the dependence between forecasters is therefore 
not as easy to predict. 

Moreover, all combinations are subcombinations of a larger one. Since the covari-
ance between two weights depends on which other forecasters are reported in the dataset, 
there is no guarantee that a plot of a subcombination exhibits similar or even compatible 
patterns with the plot of the original dataset, even if the forecasters not included in the 
subcombination are irrelevant (redundant). 

There is thus incoherence of the correlation between weights as a measure of depen-
dence. Note, however, that the ratio of two weights remains unchanged when we move 
from a full combination to a subcombination. Therefore, as long as we work with scale 
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invariant functions (i.e., ratios), we shall be subcombinationally coherent (Aitchison, 
1986). 

Since standard descriptive statistics (e.g., arithmetic mean and standard deviation) 
are not informative with combinations, in this paper we propose a time-varying method 
to combine, select, and recombine forecasters based on Aitchison (1982, 1986), who 
characterized compositions as vectors having a relative scale and identifed its sample 
space with the simplex. More crucial than the constraining property of compositional 
data is the scale-invariant property of this kind of data. Indeed, when we are consid-
ering only few forecasters of a full combination we are not working with constrained 
data but our data are still compositional. This approach has been successfully applied to 
various felds; see, for instance, Aitchison (1986) Billheimer, Guttorp and Fagan (2001), 
Egozcue and Pawlowsky-Glahn (2005, 2019), Coenders and Ferrer-Rosell (2020) and 
Greenacre (2021). Software packages available now to deal with compositional data are, 
for example, Van den Boogaart and Tolosana-Delgado (2013) and Filzmoser, Hron and 
Templ (2018). To our knowledge, it has not been applied to combinations of forecasts. 
Compositional Data Analysis (CoDA) is a well-established set of statistical methods for 
the analyses of compositional data, that enables coherent modelling of weight combina-
tions where dependences between weights are explicitly modeled, so a relative improve-
ment in the weight for one forecaster leads to a decline in the relative weight for the 
remaining ones. 

Any statement about weight combinations can be reformulated in terms of (centred) 
logratios and viceversa (one-to-one transformation). Data are projected into multivariate 
real space, opening up all available standard multivariate techniques. Moreover, weight 
combinations may be represented by orthonormal coordinates (Mateu-Figueras, Paw-
lowsky-Glahn and Egozcue (2011); Pawlowsky-Glahn and Buccianti (2011), Pawlow-
sky-Glahn, Egozcue and Tolosana-Delgado (2015)) in a real Euclidean space that can be 
interpreted in themselves or from their representation in the simplex (Aitchison geome-
try). 

The analysis that is presented in this paper uses the Split-Then-Combine (STC) ap-
proach of Arroyo and de Juan Fernández (2014) to generate the weights of a combina-
tion. Because they are restricted to be positive and sum up to one, we propose the sample 
centre g of our weight combinational sample as our basic simplicial combination vector. 
To get a subcombination, we develop a Combination-After-Selection (CAS) procedure 
to recombine the best subset of forecasters. 

The paper is organized as follows: the next section describes the STC approach both 
in the Euclidean and simplex spaces. Then, we explain the CAS strategy. In the empir-
ical application, in Section 4, we pull out information provided by panels of quarterly 
periodicity from a pool of expert forecasters for the US macroeconomy over the pe-
riod 1991–2018. Forecast accuracy of simplicial combinations are compared with the 
uniform benchmark arithmetic average.The results obtained with CAS are clearly bet-
ter than the obtained with the other combinations. Finally, some concluding remarks 
complete the paper. 



193 Antonio Martı́n Arroyo and Ar´ andezanzazu de Juan Fern´ 

2. The Split-Then-Combine (STC) approach 

Arroyo and de Juan (2014) proposed the Split-Then-Combine approach to generate com-
Yt, j , j = 1, 2, ...,J, along t = 1,2, ...,T peri-

˛ ° 
˜ 

binations for panel m across J forecasters 

ods using the expression: 

Y (m) 
t ° = ω(m) 

t,1 Y (m) 
t,1 
° + ω(m) 

t,2 Y (m) 
t,2 
° + ... + ω(m) 

t,J Y (m) 
t,J 
° , 

where the weights ωt 
( 
, 
m
j 
) vary in two dimensions: (1) from one period to the next; and (2) 

from one panel to another. We have one panel for each season. Each panel is a tableau 
of T rows (years) and J columns (forecasters). Each row is then closed to a positive 
weight combination with weights adding up to one. Finally, this weight combination is 
used to weight forecasters in out-of-sample forecasting exercises. For example, if we are 
working with monthly data, we will have 12 panels, one for each month; if we work with 
quarterly data, we will have four panels, one for each quarter. Panels take into account 
the different behaviour of the time series among seasons, but STC can also be applied to 
time series with lower frequency than quarterly or monthly data.1 

The weights of the STC approach must satisfy two restrictions: be positive and sum 
up to one; the latter is to avoid biased combinations if individual forecasts are unbi-
ased. Arroyo and de Juan (2014) developed the STC in the Euclidean Space. Here, we 
also study the STC in the so-called Aitchison geometry (Billheimer et al., 2001, and 
Pawlowsky-Glahn and Egozcue, 2001). 

In order to see the differences between both methods, we frst briefy review the STC 
approach in the Eucidean space; then, we expand the STC approach to the simplex space. 

2.1. The STC approach in the Euclidean Space 

Table 1 shows how the STC approach works in the Euclidean space. Columns 2 to 5 
show the forecasts of the variable of interest for panel m. Each element of this column 
represents the forecast of each forecaster for a given period. For instance, °Y (m) 

2,1 is the 
forecast of a variable of interest Y from forecaster 2 for period 1 in panel m. The 6th col-

(m)° 

° 

Y 
of the J forecasters for the frst forecasting period. The 6th row shows the time average 

Y 

umn shows the cross average by period for the J forecasters; that is, is the average J,1 

(m)
by forecaster, that is, is the average over time of all the forecasts from the frst fore-1,T1 

˙ 

° 

˝caster. Column 7 reports the actual, observed data of the variable and the 7th row shows 
(m) 

Y . Thisthe precision of each forecast average with respect to the overall average J,T1 

measure is used to construct the weights ω that will be assigned to each forecast in the 
STC approach in the Euclidean space. 

1See Bujosa-Brun et al. (2020) for an application of the STC approach to annual data with only one 
panel. 
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Table 1. STC approach in the Euclidean Space. 

(m)˜Panel m 1 2 ... J Y Real data J,t 

1 

2 

... 

T1 

Ỹ (m) 
1,1 

Ỹ (m) 
1,2 

... 

Ỹ (m) 
1,T1 

Ỹ (m) 
2,1 

Ỹ (m) 
2,2 

... 

Ỹ (m) 
2,T1 

... 

... 

... 

... 

Ỹ (m) 
J,1 

Ỹ (m) 
J,2 

... 

Ỹ (m) 
J,T1 

(m)
Ỹ J,1 
(m)

Ỹ J,2 

... 
(m)

Ỹ J,T1 

Y (m) 
1 

Y (m) 
2 

... 

Y (m) 
T1 

(m) 
Y (m)Ỹ  j,T1 

˜Ỹ 1,T1 Ỹ 2,T1 ... Ỹ J,T1 Y J,T1 T1 ° ˛−2 ° ˛−2 ° ˛−2
(m) (m) (m)(m) (m) (m)˜ ˜ ˜Fixed Y − Ỹ  Y − Ỹ  ... Y − Ỹ1,T1 J,T1 2,T1 J,T1 J,T1 J,T1 

The STC weights ω are then computed with the information up to time T1 for each 
panel using the precision accuracy of each forecaster based on the normalized average 
squared forecast error: ° ˛−2

(m)(m)˜ − ̃Y Yj,T1 J,T1 

ω(m) 
= ° j,T1 

(m) 
˛−2 . 

J (m)˜ − ̃∑ Y Yj,T1 J,T1
j=1 

From these weights, we then form the STC combination in T1 + 1 for panel m: 

Ỹ (m)
= ω(m)Ỹ1 

( 
, 
m
T1 

)
+1 + ω(m)Ỹ2 

( 
, 
m
T1 

)
+1 + ... + ω(m)Ỹ (m) 

T1+1 1,T1 2,T1 J,T1 J,T1+1. 

This expression must be computed for each panel, m = 1,2, ...,M. These weights satisfy 
two restrictions: they are positive and add up to one. Once we get forecasts at T1 + 1, we 
re-compute the weights by rolling over another one-step-ahead combination for T1 + 2, 
and so on, always keeping the same two restrictions. 

2.2. Diffculties with the weight combinations 

Standard descriptive statistics are not informative with weight combinations. In partic-
ular, the arithmetic mean and the variance of individual weights do not ft the Aitchison 
geometry as value of central tendency and measure of dispersion. These statistics are 
defned in the framework of Euclidean geometry in real space, which is not a sensible 
geometry for weights. Therefore, it is necessary to introduce alternatives. They are found 
in the concept of sample centre (Aitchison, 1997), variation matrix, and total variance 
(Aitchison, 1986). 

The constraints of constant unit sum and relative meaning of the forecasters’ weights 
have important implications for their statistical analysis, thus rendering direct application 
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of multivariate statistical methods misleading or spurious when applied to combinations 
for various reasons: (see Chayes, 1960 and Barceló-Vidal and Martı́n-Fernández, 2016). 

1. Nonnormality: due to the bounded range of values between 0 and 1, instead of 
−∞ and +∞. 

2. Spurious correlation 

3. Singularity: Euclidean (i.e., raw) variance matrices of random weights are always 
singular due to the constant sum constraint. A classical way to get rid of singu-
larity is to erase one weight, but results will depend on which one is erased, not 
being an operation that is permutation invariant. 

4. Negative bias: Some of the Euclidean covariances are forced towards negative 
values. Hence Euclidean correlations are not free to range over the usual interval 
(−1,1) subject only to the non-negative defniteness of the variance matrix. 

5. Null-correlation: With negative bias, what is the meaning of zero correlation 
between two components of a combination? 

6. Subcombinational Incoherence: There is no relationship between the Euclidean 
variance matrix of a subcombination and that of the full combination. Besides, 
variances may display different and unrelatable rank orderings as we form sub-
combinations. Note, however, that the ratio of two components remains unchanged 
when we move from full combination to a subcombination so that as long as we 
work with scale invariant functions (i.e., ratios), we shall be subcombinationally 
coherent. 

7. Nonsense of scatterplots for pairs of forecasters: Since the raw covariance be-
tween two weights depends on which other forecasters are reported in the dataset 
(all combinations are subcombinations of a larger one), there is no guarantee that 
the Euclidean plot of a closed subcomposition of forecasters exhibits similar or 
even compatible patterns with the Euclidean plot of the original dataset, even if 
the forecasters not included in the subcomposition are irrelevant. Thus, a regres-
sion line drawn in such a plot cannot be trusted. 

8. Finally, the construction of a combination from a vector of Euclidean amounts is 
a constraining closing operation similar to that of the construction of a vector of 
subcombinations from the related combination. We may therefore expect the same 
diffculty in relating variance-covariance matrices of weights in the simplex and 
those in the the Euclidean space. 

Weight combinations are multivariate observations carrying relative information: 
those following the principle of scale invariance, typically being represented in pro-
portions and percentages. In other words, for combinations the relevant information is 
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contained in (log-)ratios. Combinations thus need an own set of statistical methods and 
should not be treated with statistical methods made for interval scale data. Instead, com-
binations should be always treated in a log-ratio-transformed scale. It is quite evident 
that our dataset can only be combinational if it has at least two forecasters. Other-
wise, we cannot speak of a weight in a unit total. That implies a substantial difference 
between combinational data and other multivariate datasets. Most multivariate analysis 
begin with a univariate analysis of the individual variables (the marginals), whereas each 
marginal forecaster of a combinational dataset has no meaning on itself, isolated from the 
remaining forecasters. One combinational dataset should only use proportional weight 
values. Therefore, results on a subset of forecasters (subcombination) do not depend on 
the presence or absence of other irrelevant forecasters in the dataset (subcompositional 
coherence). 

3. The STC approach in the Simplex Space and Combination-after-
Selection (CAS) 

Traditional decomposition techniques provide inconsistent results when applied to com-
positional data as they do not recognize the implicit constraints of summing to a constant 
(Aitchison, 1982, 1986): mathematically, compositional data lie in the bounded space of 
the simplex while traditional decomposition techniques are defned for data in the real 
space. Aitchison (1986, pp.79) showed that by making log-ratio transformations it is 
possible to express compositional data in the real space where the data can be analysed 
with conventional models and then transformed back into the simplex. For instance, the 
Aitchison inner product, defned in tems of logratios, turns out to be equivalent to the Eu-
clidean inner product in terms of centred logratios. We make use of the centred log-ratio 
transformation to express the weights in the real space. The clr transformation takes the 
logarithm of the ratio of each weight divided by the geometric mean of all weights. This 
transformation maintains the initial constraint in the weights as its elements sum to 0 by 
construction but resulting values are real. The inverse clr transformation takes the data 
back to the simplex with the closure operator C that divides the exponential of each clr 
entry by the sum of all entries. 

Consider a T × J panel Y of T out-of-sample forecasts Yt, j produced over time by 

 
J forecasters on some variable of interest Yt , and A be its related panel of prediction−2 

Yt, j −Ytaccuracies at, j ≡ ∈ R+. Then, the matrix 

  
w ′ 1•w1,1 ... w1,J  

 
≡ 

 

 

... ... ... 
wt,1 ... wt,J 

... 
w ′ t•W ≡ ≡ ( w•1 ... w• j ... w•J ), 

... ... ... 
wT,1 ... wT,J 

... 
w ′ T • 
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J 
with weights wt, j ≡ at, j/ ∑ at j  represents T combination vectors w1•, ..., wT • such that 

j=1 
J 

wt, j > 0 for all t and j, and ∑ wt, j = 1 for all t. Thus, w ′ is just a 1 × J point int• 
j=1 

a simplex space SJ−1 of positive weights adding up to one of dimension J − 1 2 . The 
function C : RJ  into a vector of → SJ−1 that transforms a vector of precisions at• ∈ RJ 

+ + 
weights wt• ∈ SJ−1 is called a closure transformation wt• = C(at•). Since this operator 
cancels out any constant, C(cat•) = C(at•), it is scale invariant. Hence, we just need to 
work with scale invariant functions (e.g., ratios or logratios). The ratio of two weights 
remains unchanged when we move from a full combination to a subcombination; that 
is, at,i/at, j = wt,i/wt, j = st,i/st, j for all t. Hence, as long as we work with ratios or 
logratios, we guarantee scale invariance. Therefore, we only consider relative precision 
among forecasters: each weight in a combination vector has no meaning on itself isolated 
from the others. Every statement about vectors in SJ−1 will be fully expressed in terms 
of logratios in RJ−1 with inferences transformed back from RJ−1 into combinational+ + 
statements in SJ−1. The STC sample centre g of W is defned as: 

˜ ° 
1/T 1/T g = C ∏T w , ...,∏T w ≡ C (g(w•1) , ...,g(w•J )) . (1)t=1 t,1 t=1 t,J 

That is, the point in the simplex given by the closure of the geometric averages 
of weights over time. It can also be viewed as the inverse function of the clr isomor-
phic transformation applied to the time average of the sample forecasters’ weights 
(Pawlowsky-Glahn et al., 2015). Note that in this defnition, the geometric mean is con-
sidered column-wise (i.e., by forecasters), while in the clr transformation the geometric 
mean is considered row-wise (i.e., by samples). 

The centred logratio transformation clr : SJ−1 → R, for each t = 1, ..., T, 

J1 wt, j wt, jxt, j = clr(wt, j) := lnwt, j − ∑ lnwt, j = ln 1/J 
≡ ln , j = 1, ...,J, (2)

J ∏J g(wt•)j=1 j=1 wt, j 

where g(wt•) is the geometric average of the J weights for the tth observation. This 
function may be interpreted as a bijection SJ−1 ↔̨  H

J−1 between SJ−1 and̋ a vector sub-
space of RJ 

+ defned by the expression HJ−1 := xt• ∈ RJ 
+ : ∑J

j=1 xt, j = 0 , orthogonal 
to the vector of ones. The inverse clr transformation is then defned by 

clrInv(xt•) := C(exp xt•) = C(wt•/g(wt•)) = C(wt•) = wt• ∈ SJ−1 , (3) 

that is, clrInv allows us to go from RJ−1 back to SJ−1.+ 

2Although in most CoDa papers the superscript of the simplex space is the number of parts, we prefer 
to emphasize its dimension which, due to the constraint, is J − 1. This is in line with the dimension of an 
isomorphic subspace of the real space isometric with the simplex. 
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The CAS subcombination is defned as C(w1, ...,wI ) = (s1, ...,sI) ∈ SI−1 inside a 
simplex of a lower dimension I − 1 so that s1 > 0, ...,sI > 0 and s1 + ... + sI = 1. Some-
times, especially when J >> T , we perform another subsequent selection by choosing 
those forecasters inside the previous CAS selection. 

A selected CAS subcombination CS : SJ−1 → SI−1 will be viewed as taking place in 
two stages: a selection of I < J forecasters by a selecting I × J matrix S, followed by its 
closure, 

′ (w1, ...,wI)
CS(g) = C(Sg) := ′ = (s1, ...,sI) . (4)

w1 + ... +wI 

For I = 3, the CAS subcombination can be represented in a ternary diagram by 
barycentric coordinates (height of the point over the side of the triangle opposite to 
it). Similarly, for I = 4, it can be represented by a tetrahedron where each possible 3-
forecast subcombination vector is found by projecting every 4-forecast vector onto the 
side opposite to the vertex corresponding to the removed forecasters. 

The performance of CAS is good just because we get rid of redundant forecasters 
(curse of dimensionality), thus increasing the forecast accuracy of simplicial statistics in 
a simplex of a lower dimension (sometimes just a tetrahedron J = 4). 

We have also carried out Q-mode clustering (Filzmoser et al., 2018) and biplot 
(Gabriel, 1971) analyses. The main goal is to achieve highly homogeneous clusters 
of forecasters’ weights; i.e., the weights within a cluster should be very similar to each 
other. On the other hand, different clusters should be dissimilar, because otherwise they 
should have been merged into one cluster. The variation matrix ϒ with elements given by ˜ ° 
the sample variance over time, ϒi, j ≡ var ln w

w 
•
•i

j 
, with diagonal elements all 0, will be 

used to defne the total variation in W as υ2 :=∑J
i= 
− 

1
1 ∑J

j=i+1 ϒi, j. Then, υ will be a proper 
measure of distance among forecasters in cluster analysis, with limit cases of perfect as-
sociation (υ = 0) to perfect independence (υ = +∞). The variation matrix (Aitchison, 
1986, or its normalized version) is suitable to express the association between weights. 
Low values express a high association, and all ratios in a sample are nearly perfectly 
proportional to each other, while large values express that the ratios are very different 
from each other. A measure of global dispersion of the weight combinational sample is 
the total variance (sum of all components of the variation matrix divided by 2J), which 
turns out to be the time average squared Aitchison distance of each weight combination 
to the sample centre, also called metric variance (Pawlowsky-Glahn & Egozcue, 2001). 

The CAS approach that selects forecasters from the sample centre g of W can be 
summarized in the following steps: 

1. Given a T ×J table Y̨ of J forecasters over T time periods in a given season (month 
or quarter in our cases), compute the related T × J table A of 1 × J vectors at 

′
• of 

prediction accuracies for each time period t ∈ [1,T ]. 

2. Convert A into a T × J table W of combination vectors wt 
′
• of weights inside the 

simplex; that is, weights in each row of W are positive and add up to one. 
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3. Calculate the sample centre g of W. 

4. Select the CAS subcombination of those forecasters with simplicial weights larger 
than 1/J. 3. 

5. Repeat steps 1-4 for all panels. 

6. Add the next row of out-of-sample accuracy forecasts to the tableau, re-compute 
the matrix of weights, and update the sample centre and CAS subcombination. 
Continue this way until the end of the forecast period. 

4. Empirical application 

We apply the STC in the simplex and CAS to the variables defned in Table 2, where 
we include their defnition and the samples used to form the combinations of forecasts. 
Here, we deal with forecasters obtained from the Survey of Professional Forecasters 
(SPF) from the Federal Reserve Bank of Philadelphia (2018). Blanks in the Survey due 
to the entry and exit of forecasters are fulflled following the same strategy as in Poncela 
et al. (2011), that is, we only consider one-step-ahead forecasts and select only those 
forecasters without missing data. When there is a missing datum, we use the two-steps-
ahead forecast to fll it. Forecasters with more than four consecutive missing data are 
excluded. For each sample, we only take into account balanced panels. This strategy is 
also used in Lahiri, Peng and Zhao (2017). Because of the entry and exit of forecasters in 
the survey, we also analyse different sample sizes, depending on the number of included 
forecasters. In Table 3, we show, for each variable, the number of forecasters chosen in 
each subsample. The combinations of forecasters are computed for the periods 2015 to 
2018. Note that, in some samples, the number of forecasters is larger than the number 
of observations, a fact that cannot be treated with other methods (e.g., regression and 
PCA). 

3When J >> T , we made a frst subselection by applying cluster and biplot analyses. Redundant fore-
casts were defned, with the former, as those whose weights belong to the same cluster; and, with the latter, 
as those lying on a common line. The sample centre of the remaining weights were then chosen prior to 
using the CAS strategy. 
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Table 2. Defnition of the main variables used in the application. Source: Survey of Professional 
Forecasters documentation. SA = Seasonal Adjusted. 

Variable Defnition Sample 

NGDP Forecasts for the quarterly level of nominal GDP. SA. billions $ 1991 Q1 - 2018 Q4 

PGDP Forecasts for the quaterly level of the chian-weighted GDP price index. 
SA. Index. Base year 1992 1991 Q1 - 2018 Q4 

UNEMP Forecasts for the quarterly average unemployment rate. SA. % points 1991 Q1 - 2018 Q4 

EMP Forecasts for the quarterly average level of nonfarm payroll employment. 
SA. Thousands of jobs. 2004 Q1 - 2018 Q4 

INDPROD Forecasts for the quarterly average level of the index of industrial prod. 
SA. Index. 1991 Q1 - 2018 Q4 

HOU SING Forecasts for the quarterly average level of housing starts. SA. millions. 1991 Q1 - 2018 Q4 

T BILL Forecasts for the quarterly average 3-months Treasury Bill rates. % points 1991 Q1 - 2018 Q4 

BOND Forecasts for the quarterly average level of Moody’s Aaa corporate. Bond 

yield. % points 1991 Q1 - 2018 Q4 

RGDP Forecasts for the quarterly chain-weighted real GDP. SA. annual rate. 
Base years 1992 - 1995, fxed weighted real GDP 1991 Q1 - 2018 Q4 

RCONSU M Forecasts for the quarterly chain-weighted real personal consumption 

expenditures. SA, annual rate, base years 1992 - 1995. 1991 Q1 - 2018 Q4 

RNRESIN Forecasts for the quarterly chain-weighted real nonresidential fxed 

investment. SA. annual rate, base years 1992 - 1995. 1991 Q1 - 2018 Q4 

RRESINV Forecasts for the quarterly chain-weighted real residential fxed 

investment. SA., annual rate, base years 1992 - 1995 1991 Q1 - 2018 Q4 

RFEDGOV Forecasts for the quarterly chain-weighted real federal government 
consumption and gross investment. SA, annual rate, base years 1992-95 1991 Q1 - 2018 Q4 

RLSGOV Forecasts for the quarterly level of chain-weighted real state and local 
government consumption and gross investment. SA. annual rate. 
base years 1992 - 1995 1991 Q1 - 2018 Q4 

CPI Forecasts for the headline CPI infation rate. SA, annual rate, % points. 
Quarterly forecasts are annualized quarter-overquarter percent changes 

of the quarterly average price index level 1991 Q1 - 2018 Q4 
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Table 3. Variables, samples and number of forecasters. 

Samples 

Variable Sample (1) Sample (2) Sample (3) Sample (4) Sample (5) 

T J T J T J T J T J 

NGDP 24 3 20a) 6 15d) 10 9g) 18 5 22 

PGDP 24 3 20a) 6 15d) 10 9g) 20 5 25 

UNEMP 24 4 20a) 6 15d) 12 9g) 22 5 27 

EMP 11 16 10 20 8 22 5 28 

INDPROD 24 4 19b) 8 15d) 12 9g) 21 5 26 

HOUSING 24 4 19b) 10 15d) 15 10 f ) 19 5 26 

T BILL 24 5 19b) 8 15d) 11 9g) 19 5 24 

BOND 24 3 19b) 5 14e) 7 9g) 13 5 17 

RRESINV 24 5 20a) 9 15d) 13 9g) 19 5 28 

RGDP 24 5 20a) 9 15d) 14 9g) 25 5 31 

RCONSUM 24 5 20a) 9 16c) 13 10 f ) 20 5 29 

RNREIN 24 5 20a) 9 16c) 13 10 f ) 20 5 29 

RFEDGOV 24 5 20a) 9 16c) 13 10 f ) 19 5 28 

RLSGOV 24 5 20a) 9 16c) 13 10 f ) 19 5 28 

CPI 24 5 20a) 8 16c) 12 10 f ) 19 5 29 

T = number of periods, J = number of forecasters, Sample (1): 1991 - 2014; Sample (2) a) 1995 - 2014; 
b) 1996 - 2014; Sample (3) c) 1999 - 2014; d) 2000 - 2014; e) 2001 - 2014; Sample (4) f) 2005 - 2014; 

g) 2006 - 2014; Sample (5) 2010 - 2014; For the EMP variable the samples are: (1) 2004-2014; 
(2) 2005-2014; (3) 2007-2014 and (4) 2010-2014 

To analyse the prediction accuracy of combinations, we look at four well-known 
measures: Mean Error (ME), Root Mean Squared Error (RMSE), Mean Absolute Per-
centage Error (MAPE), and Median Absolute Percentage Error (MdAPE). The defni-
tions of the accuracy measures are: 

˝ 
˛ ° 

˜ 
Yi 

n 2 

° 

° 

Yi−Yi 

∑ 
i=1
(Yi−Yi)n

1ME = ∑ Yi − ; RMSE = ;n n
i=1 

˙̇
˙ °Yi−Yi 

Yi 

˙̇
˙ 

˙̇
˙ 

˛˙̇
˙ . 

˜n
1MAPE = ∑ ; MdAPE = Median Yin 

i=1 

Although in general these measures produce similar results, there are some differ-
ences depending on the type of the combination considered.4 

4In previous studies, we also used Mean Absolute Scaled Error (MASE), and it made no difference with 
MAPE as to which method generates better results. 
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We compute four kinds of combinations, three with varying weights: Euclidean 
space, E STC, simplex space, S STC and CAS and the fxed-weight arithmetic average, 
AV E. 

4.1. General results 

Table 4. Summary depending on J and T . 

AV E E STC S STC CAS EUCLIDEAN SIMPLEX TOTAL 

J < T 215 171 73 289 386 362 758 
(%) (28.3) (22.6) (9.6) (39.5) (50.4) (49.1) (59.9) 

J > T 115 102 65 227 217 292 509 
(%) (22.6) (20.0) (12.8) (44.6) (42.6) (57.4) (40.2) 

TOTAL 330 273 138 526 603 664 1266 
(%) (26.0) (21.6) (10.9) (41.5) (47.6) (52.4) 

Number of times that accuracy measures favored a combination procedure.Percentages in parenthesis. 

We have analyzed 1266 values of accuracy measures. General results are shown in Table 
4. According to the type of weights, they favored fxed weights in 330 cases (26.0%) and 
varying weights in 937 (74.0%). With respect to the latter, 273 (21.6%) favored E STC, 
138 (10.9%) S STC and 526 (41.5%) CAS. Although the CAS procedure is clearly fa-
vored, there is not a clear difference when we compare the results between Euclidean 
and simplex spaces. In fact, when the combinations are done in a sample with more 
observations than forecasters, the Euclidean combinations (AV E and E STC) generate 
results as good as those obtained with the simplex (50.4% vs 49.1%); but clearly CAS is 
the best, with a 39.5% of the cases. 

When we focus on the results for J > T , simplex is better (57.4% vs 42.6%), CAS 
works very well precisely when some other methods have little to say. 
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4.2. Results by method of combination, variable and accuracy criteria 

Table 5 shows the percentage of beats by variable and accuracy criteria for each combi-
nation procedure. The following comments are worth mentioning: 

1. Results about Euclidean and simplex spaces vary depending on the accuracy mea-
sure considered. Whereas combinations in the former are clearly better with 
MAPE and MdAPE, those in the latter are better with MAE and RMSE. 

2. When we analyse combinations according to the type of weights, fxed weights 
are always the worst, therefore it is worthwile to use varying weights. 

3. CAS is on average the best, reaching 50% of the cases with ME. 

4. S STC is only the best for the PGDP considering ME, MAPE and MdAPE, whereas 
E STC is the best for several variables when we consider MAPE and MdAPE. 

5. AV E’s best results occur with RMSE. 

4.3. Results by number of forecasters and accuracy criteria 

Tables 6 and 7 show the results of each combination by the number of forecasters and 
accuracy criteria. 

Table 6. Number of beats of each combination by accuracy criteria and number of forecasts. 

Mean Error RMSE MAPE MdAPE 

AV E E STC S STC CAS AV E E STC S STC CAS AV E E STC S STC CAS AV E E STC S STC CAS 

J < T 52 21 23 95 66 18 26 75 51 65 12 66 46 67 12 63 

(%) (27.3) (10.8) (11.9) (50.0) (35.7) (9.9) (14.0) (40.4) (26.3) (33.5) (6.25) (34.1) (24.3) (35.8) (6.4) (33.5) 

J > T 31 13 17 63 37 10 20 61 27 36 15 50 20 43 13 53 

(%) (25.2) (10.4) (13.9) (50.4) (29.1) (7.7) (15.4) (47.9) (21.2) (28.0) (11.9) (39.0) (15.1) (33.6) (10.1) (41.18) 

TOTAL 83 34 40 158 103 28 46 135 78 101 27 116 65 111 25 116 

(%) (26.4) (10.7) (12.7) (50.2) (33.0) (9.3) (14.6) (43.4) (24.2) (31.3) (8.4) (36.0) (20.6) (34.9 (7.9) (36.6) 

Table 7. Number of beats of EUCLIDEAN and SIMPLEX combinations by accuracy criteria and 
number of forecasts. 

Mean Error RMSE MAPE MdAPE 

EUCLIDEAN SIMPLEX EUCLIDEAN SIMPLEX EUCLIDEAN SIMPLEX EUCLIDEAN SIMPLEX 

J < T 73 118 85 101 116 78 113 75 

(%) (38.1) (61.9) (45.6) (54.4) (59.8) (40.2) (60.1) (39.9) 

J > T 44 80 47 80 63 65 63 66 

(%) (35.7) (64.4) (36.8) (63.3) (49.2) (50.9) (48.7) (51.3) 

TOTAL 117 198 131 181 179 143 176 141 

(%) (37.1) (62.9) (42.0) (58.0) (55.6) (44.4) (55.5) (44.5) 
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In Table 6, we present the number of beats of each combination according to the 
accuracy criteria and the number of forecasters. Only in 2 cases, E STC beats CAS 
and always when the number of forecasters is lower than that of observations. In the 
rest of the cases, CAS is always the best reaching 50% of ME, almost twice of AV E 
combination. 

In Table 7, we show the results attending to the space where the combination is 
formed. As much as J > T simplex is always the best, reaching more than 60% of the 
cases for ME and RMSE. When J < T , for MAPE and MdAPE, Euclidean combinations 
are better. These good results are obtained because E STC works very well depending 
on these measures. 

4.4. Results according to the variability of the forecasts 

The basic idea under this section is the following: a fxed-weight combination assigns 
the same weight to forecasts, so if variability among them is small, then the average will 
work well in the same direction, however wrong it may be (‘precisely’ wrong) unless 
they are unbiased. On the other hand, when variability is high, it is better to assign 
different weights. This is in line with the results obtained by Jose and Winkler (2008) 
by comparing the accuracy of the average with trimmed and Winsorized averages and 
the results by Genre et al. (2013) by using the European Central Bank (ECB) survey of 
professional forecasters. In this latter paper, they fnd that some combination methods 
outperform the simple average of forecasts in variables with heterogeneity of forecasters 
and apparent bias. 

In order to verify this hypothesis, we compute the variation coeffcient (VC) of each 
variable for each combination and forecast period from 2015 to 2018. We also plotted 
the forecasts for each period 5. In fact, this issue forms part of the selection procedure 
presented in this paper, i.e. to select those forecasters that do not share common informa-
tion. In this empirical application, the forecasters come from the Survey of Professional 
Forecasters (SPF) and may have common information in forming their forecasts. This 
is the reason why we expect some forecasts to be highly correlated (even redundant) 
and others with low correlation. Then, CAS takes advantage of this situation and usually 
generates better results. 

The main comments that can be pointed out are the following: 

1. When all the forecasts included in the sample are highly correlated and their plots 
show a similar behaviour, AV E is usually the best combination. A clear example 
of this situation is shown in Figure 1 where we plot the forecasts for NGDP for all 
the samples. 

5In order to save space, these results are available upon request. 
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2. When some of the forecasts are correlated but their plots differ somewhat, AV E is 
better because of its varying-weight allocation. Figure 2 shows this situation for 
RLSGOV . 

3. In a mixed situation with some forecasts highly correlated and some others not so, 
CAS is the best because it only selects non-redundant forecasters. In Figure 3 we 
show this situation for UNEMP. 

4. In general, with low correlated forecasts, varying-weight combinations generate 
better results: the E STC and S STC, when the forecasts show a similar behaviour, 
and CAS, when they don’t. Figure 4 shows a clear example of this situation for 
HOUSING. 

Table 8 shows the variation coeffcient (VC) and results for the aforementioned 
variables6. The analysis of the VC will be done jointly with Figures 1 to 4. 

1. NGDP: All the graphs in Figure 1 show very little variation between forecasts. 
The VC in each sample is very low, suggesting that AV E should be used. Looking 
at the combination results, AV E is the winner in all the samples with the exception 
of sample 4. In this case, CAS generates the best forecasts for all the forecasting 
periods. Notice that in the graph for sample 4, although the forecasts follow a 
similar behaviour, there are some of them with different patterns that can be used 
to improve the forecast combination through CAS. 

2. RLSGOV: The behaviour of the forecasts for this variable is different from the 
one observed before. In this case, the forecasts seem to have a similar behaviour, 
but the correlation between them is not too high. Then, assigning different weights 
generates better combinations. Looking at Figure 2, we can see that S STC obtains 
very good results in 2017 and perhaps in 2016. Our perception from the graph is 
confrmed in Table 7: varying-weight combinations outperform the fxed-weight 
one. This situation is also supported by the VC, which shows higher values than 
the observed for NGDP. So, in this case, the fact that not all the forecasts show 
the same pattern leads to better forecasting results with varying-weight methods. 

3. UNEMP: The VC of this variable in Table 7 clearly shows higher values than 
the observed for the previous variables. This fact can indicate that the average 
forecast may not be the best combination in this case. Looking at Figure 6, not all 
the forecasts have the same pattern. This favors the varying-weight combinations, 
E STC, S STC and CAS, the latter being the one that beats more times. Therefore, 
in this case, selection is better than a full combination either fxed AV E or varying 
E STC. 

6The VC, fgures and results for the other variables are available upon request. They have been omitted 
to save space. 
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4. HOUSING: Figure 4 is a clear example for CAS to form a combination. Different 
behaviour of some forecasts and high VC are the clues to select forecasters to 
obtain better forecasting results. Although there is a common behaviour of some 
forecasts, the selection of orthogonalized forecasts improves the results. 

Similar results are confrmed for the other variables analysed in the empirical ap-
plication. As a matter of fact, high VC and different behaviour might be the clues to 
consider CAS as the best subcombination to forecast a variable. 

4.5. Results according to the forecast ability 

When the Diebold and Mariano (1995) or Giacomini and White (2006) tests are not 
appropriate, it might be interesting to break down the Mean Squared Forecast Error 
(MSFE) into three components (bias, variance, and covariance) to assess which of them 
holds sway over a given MSFE: 

H ˜ ˛2 ˜ ˛2 ˜ ˛2 ° °MSFE : = 
1 ∑ YT +h −YT +h ≡ Y H −Y H + sd(Y° H ) − sd(YH ) (5)
H h=1 ˜ ˛ 

+2(sd(YH ))(sd(YH )) 1 − corr[Y° H ,YH ] , 

where Y° H is an H-period average forecast, Y H is the corresponding average for the real-
ized values (YH ), sd(Y° H ) is the standard deviation of the forecasts, sd(YH ) is the standard 
deviation of the realized values for the forecast period, and corr[Y° H ,YH ] is the correlation 
between forecasts and realized values. Then, proportions are defned as follow: 

˜ ˛2 °Y H −Y H 
Bias proportion: ,

MSFE 
˜ ˛2 

sd(Y° H ) − sd(YH ) 
Variance proportion: ,

MSFE ˜ ˛ 
2(sd(YH ))(sd(YH )) 1 − corr[Y° H ,YH ] 

Covariance proportion: ,
MSFE 

We study which one constributes more to the MSFE. A ranking of preferences may be 
given by the following four situations: 

1. CASE 1: The best will be when there are little bias and variance (hence, high 
covariance proportion). 

2. CASE 2: The next one will be when there is little bias, but high variance (hence, 
low covariance proportion). 

3. CASE 3: Bad situations happen when the bias is high: either with high variance, 
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4. CASE 4: Or the worst, with low variance (‘precisely’ wrong). 

Using this classifcation, we show in Table 9 the bias, variance, and covariance pro-
portions for the combination procedures with lowest MSFE7 and in Table 10 we sum-
marize this information according to Euclidean and simplex combinations. 

Table 9. Classifcation according to their forecast ability. 

AV E E STC S STC CAS TOTAL 

# % # % # % # % # % 

Case 1 10 13.3 3 4.0 1 1.4 3 4.0 17 5.67 
Case 2 0 0.0 18 24.0 28 37.8 18 24.0 65 21.67 
Case 3 8 10.7 34 45.3 39 52.7 44 58.7 125 41.67 
Case 4 57 76.0 20 26.7 6 8.1 10 13.3 93 31.0 

#: Proportions of the best MSFE procedure included in specifc cases. 

Table 10. Classifcation according to Euclidean or Simplex. 

Euclidean Simplex 
# % # % 

Case 1 13 8.7 4 2.7 
Case 2 18 12.0 46 30.9 
Case 3 42 28.0 83 55.7 
Case 4 77 51.3 16 10.7 

#: Proportions of the best MSFE procedure included in specifc cases. 

From Table 9, we can conclude that AV E is mainly classifed in the worst situation: 
high bias and low variance (76% of the cases), but it is also the frst method classifed in 
the best situation (13.3% of the cases). 

In general, the other methods are classifed most of the times in cases 2 and 3 (low 
bias and hig variance or high bias and high variance). 

From Table 10, the case 3 is the most often with the simplex representing more than 
50% of the cases, being case 2 the second best situation that happens almost 31%. 

Considering the different methods of combination, we obtain that for AV E, case 4 is 
the most often whith MSFE. For all the others, case 3 is the one that happens most often. 

7The specifc values for the bias, variance, and covariance proportions for each variable, each sample, 
and each combination procedure are available upon request. 
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5. Conclusions 

In this paper, we have used the Split-Then-Combine (STC) approach to build positive 
weights that sum up to one. Because of these two restrictions, most methods from mul-
tivariate statistics are inapplicable for combinational datasets, giving rise to a number of 
issues that make inappropiate the Euclidean geometry. Instead, the Aitchison geometry 
considers combinations of forecasters inside the simplex, the sampling space of positive 
weights adding up to one. A one-to-one transformation between the simplex and real 
spaces allows us to use the sample centre of the simplex, with time-varying weights, 
to fnd a Combinations after Selection (CAS) simplicial subcombinations that selectis 
those forecasters in a full combination that assign higher weights than the one allocated 
by the benchmark average. 

The methodology can be summarized in these steps: frst, we split experts’ fore-
casts by seasons to assess their relative forecast performance that periodically evolves 
over time. Second, we choose as a combination vector the sample centre of the simplex. 
Then, we select forecasters inside a simplex of lower dimension by means of a centred 
logratio transformation. Finally, we make rolling, truly out-of-sample, one-step-ahead 
combinations of forecasts, even in cases where the sample size is smaller than the num-
ber of forecasters. Once a new observation is known, we recalculate the weights that we 
then keep one-step-ahead to form a new out-of-sample combination. 

We present experimental results with a pool of expert forecasters of the US macroe-
conomy over the period 1991–2018. In most cases, the Combination after Selection 
strategy improves the average (neutral combination in the simplex space) with different 
criteria of forecasting accuracy, and works very well even when the number of fore-
casters is greater than the number of observations. Forecast combination can improve 
forecasting accuracy, provided that the sets of forecasters contain some independent in-
formation. 

As a general rule, we can conclude that when there are a high number of heteroge-
neous forecasters to be combined, the best way to form a combination is by selecting a 
CAS simplicial subcombination formed by the most weighted, non-redundant forecast-
ers. 

For combinations of forecasts, the relevant information is contained in the clr coeff-
cients between forecasts. This by itself might also be interesting to symmetrize possible 
right-skewed distributions of forecaster’s precisions. Further research, therefore, will 
focus on pivot (or more general orthonormal) coordinates that aim to extract all rela-
tive information about a particular forecast in the combination. Moreover, exploratory 
and preprocessing issues may also be discussed: visualization, outlier detection, miss-
ing values, and zeros form a touchstone of the logratio analysis. Finally, many popular 
statistical methods, such as principal component analysis, cluster analysis, classifcation 
and regression analysis, may be adapted for dealing with combinations carrying relative 
information. 
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